EUV resists patterning results at SEMATECH

Kyoungyong Cho ,Karen Petrillo, Cecilia Montgomery, Alexander Friz, Yu-jen Fan, Chandra Sarma, Dominic Ashworth, Mark Neisser

SEMATECH

1. Objectives

Evaluate EUV resist samples focusing on resolution, photospeed, and LWR.

Looking for the patterning solution at 16nm HP and below.

	2009 Targets (per 2009 roadmap)	2011 Targets (per 2011 roadmap)	2012 Targets (per 2011 roadmap)
½ Pitch			
DRAM 1/2 pitch	52	36	32
Flash ½ pitch	38	22	20
MPU Gate in resist	47	35	31
3s low freq. LWR	3.7nm	2.8nm	2.5nm

Resist sensitivities ; 5 ~ 20mj/cm2

2. Tools and illumination conditions

- SEMATECH ADT
 - Conventional, 0.25 NA, sigma 0.5
- SEMATECH Albany MET
 - Quadrupole, NA 0.3, sigma 0.35/0.93 for line and space
 - Bi-convex dipole, NA 0.3, sigma 0.55/0.93 for line and space
- SEMATECH Berkeley MET
 - "18 nm dipole", NA 0.3, offset 0.63, sigma 0.15, x-offset 0.3 Pseudo PSM
 - Quadraole, NA 0.3, sigma 0.48~0.68 for contact hole
 - Annular, NA 0.3, sigma 0.35~0.55 for contact hole

Berkeley MET

4. EUV resist performance status, contact hole

- Contact hole resists remain much slower than L/S resists
- Mask bias can help resists faster.
- CDU is improving with some resists showing sub 3 nm CDU

. EUV resist performance status, line and space

Z Value of EUV resists over time (for lines and spaces)

- Data represents materials from six suppliers
- Mostly improvement in Z value comes from improving the aerial image.
- Some progress in Z value due to the resist improvements is evident

Resolution down to 15 nm has been demonstrated by using optimized illumination conditions

- Better resolution has a cost in photospeed
- There has been some improvement in best LWR recently. Best LWR is between 3nm and 4nm
- LER photospeed trade off may have improved a little
- Recent high performing resists need 20mJ/cm2 or more in dose for lines and spaces

Best materials from each supplier

- Resist H and I showed 15nm resolution.
- Many of suppliers are making progress with patterning performance

Process window of I

- Resist I had reasonable process window at 16nmHP.

5. Summary

- Resists are showing gradual improvement in resolution and LWR, best line and space resists sample showed 15nm HP and below resolution.
- Photospeed is still an issue
 - Resists with improved LWR are all above 20mJ/cm²
 - Contact hole resist are all 35mJ/cm² or higher in dose to size
- CDU is improving and some of them showed sub 3nm CDU.

